Tetrasulphur Tetranitride-Bis(norbornadiene)

By Alison M. Griffin and George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 26 August 1974; accepted 11 September 1974)

Abstract

C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{4}\), monoclinic, $C 2 / c, a=16 \cdot 69$ (2), $b=8.57$ (1), $c=10 \cdot 96$ (1) $\AA, \beta=103.67(5)^{\circ}, U=1523 \AA^{3}$, $Z=4, D_{x}=1.607 \mathrm{~g} \mathrm{~cm}^{-3}$. One $\mathrm{C}=\mathrm{C}$ bond in each diene molecule adds across an S-N-S unit to give a fivemembered $\mathrm{C}-\mathrm{S}-\mathrm{N}-\mathrm{S}-\mathrm{C}-$ ring. The product retains the eight-membered (NS$)_{4}$ ring, and possesses a crystallographic centre of symmetry. Some mean bond lengths and angles are: S-N, 1.62 (2); S-C, 1.84 (2) \AA; N-S-N, 118.0 (13); S-N-S, $126 \cdot 4$ (13) [eight-membered ring] and $118.5(13)^{\circ}$ [both rings]. The structure was refined to an R of 0.101 for 338 unique diffractometer data.

Introduction. Becke-Goehring \& Schläfer (1968) found that $\mathrm{S}_{4} \mathrm{~N}_{4}$ forms adducts with cyclopentadiene, norbornene and bicycloheptadiene, which they suggested were analogous to Diels-Alder products, the $\mathrm{S}_{4} \mathrm{~N}_{4}$ acting as a diene to form six-membered $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{S}=\mathrm{N}-\mathrm{S}-$ rings whilst retaining an eight-membered (NS$)_{4}$ ring. Brinkman \& Allen (1972) proposed structures involving five-membered $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{S}-\mathrm{N}-$ rings on the basis of n.m.r., infrared, Raman and mass spectra. The structure determination reported here shows that both of these proposed structures are incorrect.

Intensities were determined with an automated Stoe two-circle diffractometer, Mo $K \alpha$ radiation, graphite monochromator, and two crystals of approximate dimensions $0.048 \times 0.053 \times 0.139 \mathrm{~mm}$ (layers $h 0 l$ to $h 6 l$) and $0.033 \times 0.033 \times 0.285 \mathrm{~mm}$ (layers $h k 0$ to $h k 9$). The compound was prepared by refluxing a $1: 2$ molar ratio of $\mathrm{S}_{4} \mathrm{~N}_{4}$ and norbornadiene in benzene, and recrystallized from nitrobenzene. [Found: C 45.7%, H $4 \cdot 38 \%$, N $15 \cdot 4 \%, \mathrm{~S} 35 \cdot 1 \%$; calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{4}$: C 45.7%, H 4.35%, N $15 \cdot 2 \%$, S 34.8%.] Interlayer scale factors were derived by a linear least-squares analysis of common reflexions; 1112 reflexions with intensities greater than 3σ based on counting statistics were merged to give 338 unique observed reflexions. Cell dimensions were obtained from diffractometer zero-layer ω angle measurements.

The structure was solved by multisolution tangent refinement in the space group $C c$, but the best E map, which revealed all but one atom, corresponded to the centrosymmetric space group $C 2 / c$. This space group was confirmed by the successful refinement of the structure; the molecule possesses a crystallographic centre of symmetry, and the asymmetric unit consists of half of one molecule. Hydrogen atom coordinates were calculated geometrically, and the structure refined with the constraint that the $\mathrm{C}-\mathrm{H}$ vectors were fixed in
magnitude and direction but with the carbon atoms free to move (Sheldrick, 1975). The final weighted residual $R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|$ was $0 \cdot 088$, with a corresponding unweighted residual R of $0 \cdot 101$. The weighting scheme employed was $w=\sum\left[\sigma^{2}(N)+0.001 N^{2}\right]^{-1} /$ $\left(41 \cdot 98+\left|F_{o}\right|+0.00687 F_{o}^{2}\right)$, where N is the net peak count and the summation is over equivalent reflexions. Complex neutral-atom scattering factors were used (Cromer, 1965; Cromer \& Waber, 1965). Final atomic coordinates are given in Table 1 and the resulting interatomic distances and angles in Tables 2-4.*

Discussion. The molecule possesses a unique and unexpected fused-ring system. The planes of the two fivemembered $\mathrm{C}-\mathrm{C}-\mathrm{S}-\mathrm{N}-\mathrm{S}-$ rings are almost perpendicular

[^0]Table 1. Atom coordinates ($\times 10^{4}$) and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x / a	y / b	z/c	U
S(1)	181 (4)	2933 (8)	4247 (6)	\dagger
S(2)	1234 (4)	5196 (8)	5544 (7)	\dagger
$\mathrm{N}(1)$	-814 (12)	3282 (25)	4008 (18)	59 (6)
$\mathrm{N}(2)$	776 (10)	4380 (21)	4216 (16)	39 (6)
C(1)	1071 (14)	938 (28)	6158 (22)	43 (7)
$\mathrm{H}(1)$	838 (14)	-17 (28)	5531 (22)	57 (30) \ddagger
C(2)	501 (12)	2442 (22)	5921 (16)	22 (6)
H(2)	-74 (12)	2321 (22)	6201 (16)	57 (30)
C(3)	1074 (15)	3691 (29)	6675 (22)	48 (7)
H(3)	855 (15)	4238 (29)	7422 (22)	57 (30)
C(4)	1895 (14)	2742 (32)	7195 (22)	54 (7)
H(4)	2437 (14)	3454 (32)	7524 (22)	57 (30)
C(5)	1655 (13)	1601 (27)	8089 (22)	42 (7)
H(5)	1834 (13)	1683 (27)	9100 (22)	57 (30)
C(6)	1199 (13)	547 (30)	7460 (21)	44 (7)
H(6)	944 (13)	-447 (30)	7843 (21)	57 (30)
C(7)	1932 (15)	1590 (29)	6116 (22)	59 (8)
H(7)	1939 (15)	2156 (29)	5238 (22)	57 (30)
H(8)	2427 (15)	748 (29)	6338 (22)	57 (30)

\dagger Anisotropic temperature factors were employed for $\mathrm{S}(1)$ and $\mathrm{S}(2)$ in the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+\right.\right.$ $\left.\left.U_{33} l^{2} c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$. For $S(1)$, U_{11} to U_{12} were 84 (5), 27 (4), 31 (4), -15 (4), 12 (4) and $-10(5) \AA^{2} \times 10^{3}$ respectively, and for $S(2), U_{11}$ to U_{12} were 42 (4), $40(5), 80(6), 16(5), 6(4)$ and -6 (4) $\AA^{2} \times 10^{3}$ respectively.
\ddagger An overall isotropic hydrogen atom temperature factor was employed.

Table 2. Bond lengths (\AA)

$\mathrm{S}(1)-\mathrm{N}(1)$	$1.65(3)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.43(3)$
$\mathrm{S}(1)-\mathrm{N}(2)$	$1.59(2)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.55(3)$
$\mathrm{S}\left(2^{\prime}\right)-\mathrm{N}(1)$	$1.61(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.54(3)$
$\mathrm{S}(2)-\mathrm{N}(2)$	$1.63(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.58(4)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.83(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.50(4)$
$\mathrm{S}(2)-\mathrm{C}(3)$	$1.85(3)$	$\mathrm{C}(4)-\mathrm{C}(7)$	$1.55(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.59(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.27(3)$

Table 3. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$117 \cdot 7(13)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	$112 \cdot 0(17)$
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{S}(2)-\mathrm{N}(2)$	$118 \cdot 2(13)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$101 \cdot 8(19)$
S			
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{S}(2)$	$126 \cdot 4(13)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{S}(1)$	$111 \cdot 8(17)$
$\mathrm{S}(2)-\mathrm{N}(2)-\mathrm{S}(1)$	$118 \cdot 5(13)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(2)$	$107 \cdot 1(18)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$104 \cdot 2(13)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$102 \cdot 2(21)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{N}(2)$	$99 \cdot 4(12)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}(2)$	$110 \cdot 6(19)$
$\mathrm{N}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	$102 \cdot 6(13)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$103 \cdot 2(20)$
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{N}(2)$	$100 \cdot 8(13)$	$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	$98 \cdot 5(23)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)$	$101 \cdot 1(22)$	$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(3)$	$103 \cdot 9(22)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$109 \cdot 1(24)$		
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$103 \cdot 1(21)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$107 \cdot 6(26)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$107 \cdot 2(21)$	$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(1)$	$90 \cdot 1(22)$

Table 4. Intra- and intermolecular distances

Short intramolecular distances ($<3.7 \AA$)			
$\mathrm{S}(1)-\mathrm{S}(2)$	2.77	$\mathrm{N}(2)-\mathrm{C}(2)$	$2 \cdot 62$
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{S}(2)$	$2 \cdot 91$	$\mathrm{N}(2)-\mathrm{C}(3)$	2.69
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{N}(2)$	$3 \cdot 46$	$\mathrm{N}(2)-\mathrm{C}(4)$	3.64
$\mathrm{S}\left(2^{\prime}\right)-\mathrm{N}(2)$	$3 \cdot 44$	$\mathrm{N}(2)-\mathrm{C}(7)$	3.45
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}(2)$	$2 \cdot 78$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}(2)$	$3 \cdot 44$
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}(2)$	3.59	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}(3)$	3.43
$\mathrm{N}(1)-\mathrm{N}(2)$	$2 \cdot 77$		
		$\mathrm{C}(1)-\mathrm{C}(3)$	2.43
$\mathrm{S}(1)-\mathrm{C}(1)$	$2 \cdot 84$	$\mathrm{C}(1)-\mathrm{C}(4)$	$2 \cdot 20$
$\mathrm{S}(1)-\mathrm{C}(3)$	$2 \cdot 80$	$\mathrm{C}(1)-\mathrm{C}(5)$	$2 \cdot 19$
$\mathrm{S}(1)-\mathrm{C}(7)$	3.35	$\mathrm{C}(2)-\mathrm{C}(4)$	2.43
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(3)$	$3 \cdot 57$	$\mathrm{C}(2)-\mathrm{C}(5)$	2.78
$\mathrm{S}(2)-\mathrm{C}(2)$	2.73	$\mathrm{C}(2)-\mathrm{C}(6)$	2.43
$\mathrm{S}\left(2^{\prime}\right)-\mathrm{C}(2)$	$3 \cdot 59$	$\mathrm{C}(2)-\mathrm{C}(7)$	2.46
$\mathrm{S}(2)-\mathrm{C}(4)$	$2 \cdot 82$	$\mathrm{C}(3)-\mathrm{C}(5)$	$2 \cdot 42$
$\mathrm{S}(2)-\mathrm{C}(7)$	$3 \cdot 31$	$\mathrm{C}(3)-\mathrm{C}(6)$	2.82
$\mathrm{N}(1)-\mathrm{C}(2)$	$2 \cdot 75$	$\mathrm{C}(3)-\mathrm{C}(7)$	2.47
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}(2)$	$3 \cdot 70$	$\mathrm{C}(4)-\mathrm{C}(6)$	$2 \cdot 27$
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}(3)$	$2 \cdot 71$	$\mathrm{C}(5)-\mathrm{C}(7)$	$2 \cdot 32$
$\mathrm{N}(2)-\mathrm{C}(1)$	$3 \cdot 60$	$\mathrm{C}(6)-\mathrm{C}(7)$	$2 \cdot 31$
Intermolecular distances ($<3.8 \AA$)			
$\mathrm{S}\left(1^{\text {i }}\right.$) - $\mathrm{S}(1)$	$3 \cdot 73$	$\mathrm{N}\left({ }^{\text {lv }}\right.$)-C(1)	$3 \cdot 64$
$\mathrm{S}\left({ }^{2 i}\right)-\mathrm{C}(5)$	$3 \cdot 69$	$\mathrm{N}\left(1^{\text {iv }}\right)-\mathrm{C}(6)$	$3 \cdot 64$
$\mathrm{N}\left(1^{\text {i }}\right.$) $-\mathrm{N}(2)$	$3 \cdot 67$	$\mathrm{C}\left(7^{\vee}\right)-\mathrm{C}(7)$	$3 \cdot 77$
$\mathrm{N}\left(2^{\text {iiI }}\right)-\mathrm{C}(3)$	$3 \cdot 37$	(7)	3
Intermolecular $\mathrm{H} \cdots \mathrm{H}$ distances ($<2 \cdot 8 \AA$)			
$\mathrm{H}\left(7^{v}\right)-\mathrm{H}(7)$	$2 \cdot 14$	$\mathrm{H}\left(1^{\text {iv }}\right)-\mathrm{H}(1)$	2.76
$\mathrm{H}\left(4^{\text {i1 }}\right)-\mathrm{H}(8)$	2.31	$\mathrm{H}\left(2^{\text {vi }}\right)-\mathrm{H}(2)$	$2 \cdot 80$
$\mathrm{H}\left(2^{\text {vi }}\right)-\mathrm{H}(3)$	$2 \cdot 76$		
Intermolecular distances to hydrogen ($<3.2 \AA$)			
$\mathrm{S}\left(1^{\text {iv }}\right.$)- $\mathrm{H}(1)$	3.06	$\mathrm{C}\left(4^{\text {if }}\right)-\mathrm{H}(8)$	$3 \cdot 10$
$\mathrm{S}\left(1^{\text {vil }}\right.$) $-\mathrm{H}(6)$	3.07	$\mathrm{H}\left(2^{\text {vi }}\right)-\mathrm{C}(5)$	2.99
$\mathrm{N}\left(1^{\text {iv }}\right.$) $-\mathrm{H}(1)$	$2 \cdot 85$	$\mathrm{H}\left(2^{\text {vi }}\right)-\mathrm{C}(6)$	3.05
$\mathrm{N}\left(1^{\text {iv }}\right.$) $-\mathrm{H}(6)$	$3 \cdot 14$	$\mathrm{H}\left(4^{\text {ii }}\right)-\mathrm{C}(6)$	$2 \cdot 89$
$\mathrm{N}\left(2^{\mathrm{ili}}\right)-\mathrm{H}(3)$	$2 \cdot 33$	$\mathrm{H}\left(4^{\mathrm{ii}}\right)-\mathrm{C}(7)$	$3 \cdot 13$
$\mathrm{H}\left(1^{\text {iv }}\right)-\mathrm{C}(2)$	$3 \cdot 19$	$\mathrm{C}\left(7^{V}\right)-\mathrm{H}(7)$	$2 \cdot 78$

Key to symmetry transformations. Superscript: (i) $-x, y, \frac{1}{2}-z$;
(ii) $\frac{1}{2}-x, y-\frac{1}{2}, 1 \frac{1}{2}-z$; (iii) $x, 1-y, \frac{1}{2}+z$; (iv) $-x,-y, 1-z$;
(v) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (vi) $-x, y, 1 \frac{1}{2}-z$; (vii) $x,-y, \frac{1}{2}+z$.

Fig. 1. One molecule of the adduct.
to the approximate plane containing six of the eight atoms in the $(\mathrm{SN})_{4}$ ring (Fig. 1). In retrospect, the n.m.r. spectrum and decoupling experiments of Brinkman \& Allen (which we have confirmed) are consistent with either $\mathrm{N} \cdots \mathrm{N}$ or $\mathrm{S} \cdots \mathrm{S}$ addition, but not $\mathrm{N} \cdots \mathrm{S}$ addition. In contrast to the structures of $\mathrm{N}_{4} \mathrm{~S}_{4} \mathrm{~F}_{4}$ (Wiegers \& Vos, 1963) and $\mathrm{N}_{4} \mathrm{~S}_{4}\left[\mathrm{ON}\left(\mathrm{CF}_{3}\right)_{2}\right]_{4}$ (Forder \& Sheldrick, 1971), the conformation of the eight-membered ring is also quite different from that in these two structures, with a centre of symmetry rather than a crystallographic inverse tetrad axis. The $\mathrm{S}-\mathrm{N}$ bond lengths (mean 1.62 (2) \AA) are close to the mean value in $\mathrm{S}_{4} \mathrm{~N}_{4}$ of 1.616 (10) \AA (Sharma \& Donohue, 1963), indicating appreciable multiple-bond character, but the $\mathrm{N}-\mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{N}-\mathrm{S}$ angles are wider. There are no particularly short intermolecular distances (Table 4).

We are grateful to the Science Research Council for providing the diffractometer, and for a maintenance grant to A.M.G. The calculations were performed on the Cambridge University IBM 370/165 computer with programs written by G.M.S.

References

Becke-Goehring, M. \& Schläfer, D. (1968). Z. anorg. allgem. Chem. 356, 234-238.
Brinkman, M. R. \& Allen, C. W. (1972). J. Amer. Chem. Soc. 94, 1550-1553.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Forder, R. A. \& Sheldrick, G. M. (1971). J. Fluorine Chem. 1, 23-29.
Sharma, B. D. \& Donohue, J. (1963). Acta Cryst. 16, 891897.

Sheldrick, G. M. (1975). To be published.
Wiegers, G. A. \& Vos, A. (1963). Acta Cryst. 16, 152-153.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30658 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

